当前核电站利用核聚变发电吗


 发布时间:2020-09-24 19:38:43

首先需要将氘氚的等离子体瞬间加热到1亿摄氏度,并至少持续1000秒,才能为人类所用。记者近日走进科学岛上的中科院合肥研究院等离子体物理研究所(简称等离子体所),走近“人造小太阳”EAST,探寻演绎数十年的现代版夸父追日的故事。等离子体所成立于1978年,以探索、开发、解决人类无限

中科院等离子体所的EAST采用世界上第一个非圆截面全超导托卡马克,西南物理研究院的中国环流器一号以及国际热核聚变实验堆(ITER)计划也都采用托卡马克的原理实现聚变能的可控释放。磁约束设备比较大,但反应持续性能好,不需要反复点火,适合作为核电站、大型船舶的供电系统,但其缺点在于开关火性能不佳,灵活度不够,而且维持强磁场所需的电能成本也不低。二、惯性约束型核聚变惯性约束中激光约束技术最为成熟,这主要是因为激光技术能产生聚焦良好的能量巨大的脉冲光束,因此我国的神光装置以及美国的国家点火装置都采用这种核聚变约束形式。

另外,中国工程物理研究院研制的Z箍缩驱动聚变技术也属于惯性约束,它是利用脉冲功率技术,创造大电流从金属套筒(后变为等离子体)流过的条件,产生超强电磁内爆,使等离子体套筒获得足够的内爆动能,然后与聚变靶丸相互作用,把动能变为辐射能,近似球对称低压缩热核燃料,最终实现大规模的热核聚变。惯性约束的好处在于设备可以做小,而且开、关火控制性能也比较好,适合在未来用于飞行器等领域,但其缺点是需要消耗大量能源产生激光用来点火,而且燃料靶丸制造成本也很高。

2017年7月,EAST装置在世界上首次实现了5000万摄氏度等离子体持续放电101.2秒的高约束运行,创造了核聚变的世界纪录。这一里程碑式的突破,表明在稳态运行的物理和工程方面,我国磁约束核聚变研究走在国际前沿。罗德隆说,在大力推进自身托卡马克装置研制和实验的同时,我国也积极参与、推动国际热核聚变实验堆ITER计划。他介绍,ITER的构成相当复杂,需要各项超前技术。我国陆续承担了该计划18个采购包的制造任务,涵盖了ITER装置几乎所有的关键部件,制造任务由几十家科研院所、企业承担。

事实上,人类已经实现不受控制的核聚变,如氢弹的爆炸,但要想有效利用核聚变释放的能量,必须合理地控制核聚变的速度和规模,实现持续、平稳的能量输出。为了能够早日实现聚变能的可控释放,科学家进行了很多尝试。一、磁约束型核聚变磁约束热核聚变是当前开发聚变能源中最有希望的途径,在受控核聚变的探索方面,已提出了许多种磁约束途径,其中环形磁约束装置(托卡马克)是目前各个实验方案中最成功的方法。托卡马克的中央是一个环形的真空室,外面缠绕着线圈,在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。

为了维持强大的约束磁场,电流的强度非常大,时间长了,线圈就要发热。为了解决这个问题,人们把最新的超导技术引入到托卡马克装置中,目前,法国、日本、俄罗斯和中国共有4个超导的托卡马克装置在运行,它们都只有纵向场线圈采用超导技术,属于部分超导。其中法国的超导托卡马克Tore-Supra体积较大,它是世界上第一个真正实现高参数准稳态运行的装置,在放电时间长达120秒的条件下,等离子体温度为2000万摄氏度,中心粒子密度每立方米1.5×1019个。

激光点火时间必须控制在十亿分之一秒,才能引起燃料内爆压缩产生聚变能量。2013年9月,美国核聚变国家点火装置(NIF)宣布,首次实现燃料靶点输出能量超出输入能量。中国的“神光”高功率激光打靶装置,使我国成为继美国之后世界上第二个具备独立研究和建设新一代高功率激光驱动器能力的国家。基于磁约束的ITER计划被寄予厚望,该“人造太阳”工程的核心装置叫做“托卡马克”(TOKAMAK),名字来源于环形、真空室、磁、线圈的英文,由前苏联科学家阿齐莫维齐等人在上世纪50年代发明。

核聚变能是两个较轻的原子核结合成一个较重的原子核时释放的能量,聚变的主要燃料是氢的同位素——氘和氚。太阳发光发热的原理正是核聚变反应。中国国际核聚变能源计划执行中心主任罗德隆说,太阳的中心温度极高,气压达到3000多亿个大气压,在这样的高温高压条件下,氢原子的两个“同胞兄弟”——氘和氚聚变成氦原子核,并放出大量能量。“太阳犹如一个巨大的核聚变反应装置,几十亿年向外辐射能量。”不过,由于聚变能量实在太大,人类要加以利用,就必须对它进行控制,这也是科学家一直努力的目标。

沈如刚 买卖网 压裂车

上一篇: 广东清远连续两年成重酸雨区 专家表示成因复杂

下一篇: 煤炭燃烧多了会导致酸雨嘛



发表评论:
相关阅读
网站首页 |网站地图 |互联网违法和不良信息举报中心

Copyright © 2012-2020 程门能源网 版权所有 0.22616